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Simulation-Based Uncertainty Quantification for Estimating Atmospheric CO2
from Satellite Data∗
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Abstract. Remote sensing of the atmosphere has provided a wealth of data for analyses and inferences in
earth science. Satellite observations can provide information on the atmospheric state at fine spatial
and temporal resolution while providing substantial coverage across the globe. For example, this
capability can greatly enhance the understanding of the space-time variation of the greenhouse gas,
carbon dioxide (CO2), since ground-based measurements are limited. NASA’s Orbiting Carbon
Observatory-2 (OCO-2) collects tens of thousands of observations of reflected sunlight daily, and the
mission’s retrieval algorithm processes these indirect measurements into estimates of atmospheric
CO2. The retrieval is an inverse problem and consists of a physical forward model for the transfer
of radiation through the atmosphere that includes absorption and scattering by gases, aerosols, and
the surface. The model and other algorithm inputs introduce key sources of uncertainty into the
retrieval problem. This article develops a computationally efficient surrogate model that is embedded
in a simulation experiment for studying the impact of uncertain inputs on the distribution of the
retrieval error.
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1. Introduction. In recent decades, atmospheric remote sensing has provided a wealth of
data for understanding the Earth system. Remote sensing instruments, particularly Earth-
orbiting satellites, exploit characteristics of electromagnetic radiation to make inferences about
the state of the atmosphere. The retrieval problem, namely, estimating the atmospheric state
from a satellite’s observed radiation, is a primary scientific inference objective for remote
sensing data. Each instrument has one or more associated retrieval algorithms that estimate
a quantity of interest (QOI) from the instrument’s observed radiances. Retrieval algorithms
use a variety of approaches for estimating the atmospheric state. Some examples include
construction of lookup tables, statistical modeling in combination with likelihood inference,
and Bayesian inverse inference. Formal uncertainty quantification (UQ) can be a valuable tool
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Figure 1. Summary of key sources and sinks of radiation along a path through the atmosphere to the satellite.

in any of these situations by providing a framework for propagating the impact of algorithm
choices, including the sources of uncertainty that accompany them, through the retrieval
process.

In satellite remote sensing, the QOI (e.g., the atmospheric state) is inferred from observ-
able radiance spectra (Figure 1), making inference an example of an inverse problem. Inverse
problems present a number of challenges, including a tendency to be ill-posed and highly
sensitive, particularly when the relationship between the state and the observation is non-
linear [17, 7]. Bayesian inference is an appealing option in this situation because additional
information about the state or other model parameters can be introduced. In remote sensing,
this approach has been developed into the so-called optimal estimation (OE) retrieval [22].
In OE retrieval, the distribution of the observed spectra given the state and the (marginal)
distribution of the state are modeled probabilistically. From these distributions, a posterior
distribution of the state given the observed spectra can be used to infer the unknown state.
Because of the inherently nonlinear relationship between the state and the observed spectra,
in practice this posterior distribution is rarely available in closed form.

There are a number of strategies for interrogating the resulting posterior distribution, and
practical considerations, such as the volume of data to be processed and the computational
expense of the nonlinear forward model relating the radiances to the state, often take prior-
ity. Markov chain Monte Carlo (MCMC) sampling from the posterior distribution has been
implemented in remote sensing retrieval problems [25, 12], but this approach requires a large
number of forward model evaluations. The recently launched Orbiting Carbon Observatory-2
(OCO-2) provides tens of thousands of retrievals per day, requiring the retrieval process to
be computationally fast [9, 19]. The data volume means that the information extracted from
the posterior distribution is minimal, being restricted to a point estimate and an approximate
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covariance matrix. As detailed in section 2.2, a typical approach is to search for the posterior
mode, the maximum a posteriori estimate, with numerical approaches and to obtain the co-
variance matrix through linearization. Some theoretical aspects of this retrieval process have
been demonstrated [7, 8], and linear error analysis has identified key sensitivities for this OE
retrieval [23, 4].

The present paper develops a simulation-based framework for the OE retrieval applied
to atmospheric CO2 retrievals that addresses several objectives. First, the approach samples
the retrieval error distribution under standard conditions without assuming linearity. Second,
it characterizes the impact of key OE-algorithm choices on the distribution of the retrieval
error. Finally, it is contrasted with the linear error analysis that is commonly used in remote
sensing retrievals through a retrieval error budget that separates contributions from linear and
nonlinear sources. In the process, the true bias and covariance of the retrieval errors can be
determined. This approach and the underlying statistical model resemble simulation studies
of nonlinear mixed effects (NLME) models [13, 14]. In the remote sensing application, the
inference objective focuses on the state, which would be considered the random effect in the
NLME context. A simulation framework allows an extension of the linear approximation in
traditional OE retrieval error analysis [23]. This simulation-based strategy requires an OE
retrieval that is computationally fast in order to facilitate large Monte Carlo sample sizes in
the simulation experiment. In fact, the OCO-2 operational algorithm is not fast enough, so
we develop a surrogate forward model and retrieval.

This article is organized as follows. Section 2 describes OCO-2 and its role in carbon cycle
science, along with the mathematical details for the OE retrieval. Section 3 outlines a UQ
simulation framework and an associated surrogate model. Section 4 describes a simulation ex-
periment that examines dominant sources of uncertainty for OCO-2, with the results discussed
in section 5. Section 6 offers some concluding remarks and future research directions.

2. Remote sensing and OCO-2. Later sections summarize simulation experiments using
a nonlinear radiative transfer model and OE retrieval. Figure 2 provides a schematic overview
of this framework, which could be applied to retrievals from a general remote sensing instru-
ment. A particular instance requires an appropriate forward model for simulating synthetic
radiances from specified atmospheric states, plus a retrieval algorithm for estimating the state
given the observed radiances. The experiment developed in section 4 specifically targets the
OE retrieval and radiative transfer model for estimating atmospheric CO2 concentration. As
motivation, we provide background on this measurement and the mathematical framework for
the OE retrieval.

The OCO-2 launched in July 2014 with an objective of providing global estimates of
atmospheric carbon dioxide at fine spatial resolution. OCO-2’s primary QOI is the column-
averaged dry air mole fraction of CO2, a quantity termed XCO2. The estimation of XCO2 is
discussed further in section 2.2. The OCO-2 instrument’s global coverage and data volume
are providing a more comprehensive picture of atmospheric carbon dioxide (CO2) concentra-
tion, especially regional spatial patterns, seasonal cycles, and interannual variability. Remote
sensing data are an important data source for CO2, since in situ measurements are sparse and
concentrated in midlatitude land regions. A comprehensive picture of the CO2 field can aid
the understanding of the global carbon cycle. In particular, XCO2 estimates are combined
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Figure 2. Schematic diagram of the Monte Carlo framework using the OCO-2 surrogate model.

with transport models to infer carbon fluxes between the surface and the lower atmosphere.
Fluxes vary substantially across the globe, with source regions often located in close proximity
to sink regions, such as in the tropics where substantial deforestation has occurred [1].

Emissions from human activities such as fossil-fuel burning and land-use change are key
components of the global carbon budget. The combined land and ocean sinks remove approxi-
mately half of anthropogenic carbon emissions, but there is pronounced year-to-year variability
in this proportion [3]. The mechanisms behind this variability are largely unknown, and sub-
stantial uncertainty exists as to the relative impact of tropical forests and boreal forests of
the northern hemisphere as land carbon sinks. Continuous monitoring across the globe from
remote sensing instruments has the potential to more precisely identify sources and sinks and
their evolution over time. At the same time, appropriate uncertainties must be attached to
the remote sensing retrievals so that they can be propagated through the flux-inversion pro-
cess. A comprehensive understanding of the OCO-2 OE retrieval and associated sources of
uncertainty is a critical component of this end-to-end inference problem.

2.1. Measurement. The OCO-2 instrument includes three imaging grating spectrometers
measuring solar radiation reflected from the Earth’s surface in the infrared (IR) portion of the
spectrum. Each spectrometer corresponds to an IR band with a resolution of approximately
1000 wavelengths (colors) over a narrow wavelength range of less than 50 nm. Molecular
oxygen (O2) absorbs strongly in one of the bands, termed the O2-A band, and the other two
bands are known as the weak CO2 band and the strong CO2 band. The collection of observed
radiances from the three bands at a particular time make up a sounding. The satellite is in
sun-synchronous polar orbit in a formation of satellites called the A-train at 700 km above the
Earth’s surface. The orbit track crosses the equator on the daytime side in the early afternoon
local time, and about 15 orbits are completed each day [9].

Let the random vector Y represent the set of radiances for a single OCO-2 sounding.
Figure 3 gives an example of a radiance vector from the surrogate forward model outlined in
section 3. The observed radiances are a result of the interaction between the radiation and the
composition of the atmosphere and of the Earth’s surface along the path from the top of the
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Figure 3. Example of a radiance vector Y.

atmosphere to the surface and back to the satellite. The general goal is to estimate the atmo-
spheric state, which we denote as X, from the observed radiances, along with characterizing
the uncertainty of the estimate. In particular, certain atmospheric constituents will absorb
and/or scatter radiation. The extent of absorption and scattering depends on the wavelength
as well as the amount and type of the constituent, as shown in Figure 1.

The mathematical relationship between the atmospheric state X and the radiances Y is
captured through a forward model, F(X,B). The inputs of the forward model include the state
as well as a set of forward-model parameters B that are characteristics of the instrument and
any other quantities not included in the state X. In general the parameters are not perfectly
known, and their treatment in the retrieval problem is discussed in the next subsection.

For many remote sensing applications, including OCO-2, the forward model discretizes
the atmospheric vertical profile into a set of layers. The composition of different layers can
be different, but the atmosphere is assumed homogenous within a layer. This discretization
allows for a numerical solution to the equation of radiative transfer (RT), and this numerical
solution is the resulting value of F(X,B). For the OCO-2 surrogate model defined in section 3,
the elements of the state vector can be grouped into the following general categories:

• CO2 vertical profile. The dry-air mole fraction, or the number of moles of CO2
per mole of dry air, varies vertically in the atmospheric column. For OCO-2, it is
defined at 20 fixed pressure levels in the atmosphere, corresponding to the upper and
lower boundaries of each of the discrete layers. Absorption of CO2 occurs at numerous
wavelengths, often called absorption lines, in both the strong and weak CO2 bands.
Therefore, the amount of CO2 present is strongly related to the radiances at many
wavelengths in these bands. This relationship reflects the total number of molecules
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of CO2 present and, hence, additional information about the total amount of dry air
is required.
• Surface pressure. The surface pressure is a single component of the state vector that

helps identify the total number of molecules of air in the atmospheric column. Since
molecular O2 has a nearly constant dry air mole fraction anywhere in the atmosphere,
the absorption of O2 can accurately reflect the total amount of dry air. Surface pressure
is identified with this information and a representation of the presence of water vapor
in the atmosphere. Many O2 absorption lines are present in the O2 A-band.
• Surface albedo. Earth’s surface acts as a boundary condition in the RT problem.

Some radiation is extinguished and some is reflected at the surface. Surface albedo
is the fraction of reflected radiation to total incoming radiation at the surface. This
behavior varies as a function of wavelength. The state vector includes two albedo
coefficients for each of the three bands. The first is the albedo at a reference wavelength
at the center of the band (intercept), and the second is a slope that defines the linear
change in albedo across the band.
• Aerosols. Small particles in the atmosphere interact with incoming radiation in

complex ways. Some radiation is extinguished, and the extent of this extinction is often
summarized by aerosol optical depth (AOD), which is defined as the natural logarithm
of the ratio of incoming to transmitted radiation. Since the ratio is larger than unity,
AOD is strictly positive, and larger values correspond to more opaque conditions due to
radiation extinction by aerosols. In addition, some radiation is scattered in different
directions, represented as different angles with respect to the direct path from the
sun. The forward model accounts for the angular dependence of scattering through
a phase function. The OCO-2 state vector includes three coefficients to describe the
aerosol vertical profile for up to four different aerosol types. For a given aerosol type,
one coefficient is the natural logarithm of the total AOD in the O2 A-band. The
second coefficient represents the vertical height where the aerosol concentration is a
maximum. The third coefficient represents the depth of the aerosol profile; a small
value indicates a “thin” aerosol layer. The state vector can include these coefficients
for an arbitrary number of different aerosol types, which are characterized by different
scattering properties in the forward-model parameters B.

These components represent the key state variables in our investigation and are included
in the state vector for the surrogate model in section 3. These components, particularly
aerosols and albedo, critically impact the uncertainty in retrieved CO2 [19]. Their actual
implementation in the RT model is outlined in Appendix B, and additional components of the
full physics state vector are noted in Table 1. The OCO-2 mission’s primary QOI is the CO2
mole fraction, but it is important to include other components in the state vector because
they play important roles in the forward model. Since they are not perfectly known, they
are estimated as part of the retrieval. These additional quantities are often termed nuisance
parameters in statistics and have been termed interferences in the remote sensing retrieval
literature [23]. The CO2 retrieval problem is particularly challenging due to the nonlinear
nature of the forward model and the heterogeneous makeup of the state vector. Further, the
sensitivity of the measured radiance to these interferences is often larger than to changes in
CO2.
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Table 1
Composition of the state vector X in the OCO-2 full physics (FP) forward model and in the surrogate

forward model.

Component FP Surrogate

20-level CO2 profile X X

Surface air pressure X X

Surface albedo X X

Aerosol profile X X

Temperature scaling X

Humidity scaling X

Wavelength offset, scaling X

Fluorescence X

2.2. Optimal estimation. The relationship between the n-dimensional vector of satellite
radiances Y and the r-dimensional state vector X, where typically n� r, can be represented
through a simple statistical model,

(1) Y = F(X,B) + ε.

The random errors ε can represent measurement error along with model discrepancy. Here
we assume

ε ∼ Gaussian (0,Σε) .

The state vector can also be treated as a random vector with a marginal distribution,

X ∼ Gaussian (µX,ΣX) .

Inference for the state can be carried out through its conditional (or posterior) distribution
given the radiances and relevant parameters φ = (µX,ΣX,Σε,B),

[X|Y,φ] =
[X,Y|φ]∫

[X,Y|φ]dX

=
[X|φ][Y|X,φ]∫

[X|φ][Y|X,φ]dX
,

where the notation [A|B] denotes the conditional probability distribution of A given B. The
conditional mean E(X|Y,φ) can serve as an estimate of the state, and the conditional variance
V ar(X|Y,φ) can characterize the uncertainty of the estimate. This inference framework is
known as OE in the remote sensing literature [22]. OE retrievals for atmospheric constituents
such as carbon monoxide, CO2, and ozone have been implemented for a number of recent
Earth-observing satellites [19, 27]. Despite the multivariate Gaussian assumption for the
random errors and the atmospheric state, the posterior distribution is not Gaussian if the
forward model is nonlinear. Generally, an analytical form for the posterior distribution is
unavailable. However, sampling from the posterior distribution is possible with MCMC [24,
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12], but can be prohibitively expensive for the number of soundings processed for a mission
like OCO-2. Evaluation of the forward model F(X,B) is time consuming, so the full posterior
distribution must be summarized in an efficient manner that limits the number of evaluations
of the forward model.

A strategy commonly advocated in remote sensing and used in the OCO-2 FP retrieval al-
gorithm is to search for the posterior mode. This is equivalent to minimizing a “cost function”
of the form,

−2 ln[X|Y,φ] = (Y − F(X,B))T Σ−1
ε (Y − F(X,B))

+ (X− µX)T Σ−1
X (X− µX) + constant.(2)

A variety of optimization algorithms can be used for solving this nonlinear least squares
problem. The Levenberg–Marquardt (LM) algorithm, which is a tunable generalization of
gradient descent and the Gauss–Newton algorithm, is often used in remote sensing applications
[22]. The actual implementation of the algorithm includes nontrivial choices such as the
starting value, convergence criterion, and initial value for the LM regularization parameter.
The algorithm determines step size and direction, in part, based on the gradient of the cost
function (2), which requires the forward-model Jacobian,

K(X) =
∂F(X,B)

∂X
≡
(
∂Fi(X,B)
∂Xk

)
.

Notice that the Jacobian is generally a function of the atmospheric state.
In an operational setting such as the OCO-2 FP retrieval, other algorithm choices must

be made as well. In particular, values for key parameters are set at fixed values. Since their
true values are not generally known, we distinguish these retrieval parameters from their true
counterparts.

• The retrieval forward-model parameters are set at B̂, and the true forward-model
parameters are B.
• The retrieval prior mean vector is set at µa, and the true marginal mean for the state

is µX.
• The retrieval prior covariance matrix is set at Σa, and the true marginal covariance

for the state is ΣX.
• The retrieval radiance error covariance matrix is set at Σe, and the true radiance error

covariance is Σε.
The value of the state vector at the last step of a nominally converged LM algorithm is
declared the retrieved state and denoted X̂. It is a function of the data Y. An expression for
the posterior covariance [22] can be computed through a linear approximation,

S(X) ≡
[
K(X)TΣ−1

e K(X) + Σ−1
a

]−1
.

This approximation involves the Jacobian, which must be evaluated at a chosen value of the
state vector. This choice of X, or linearization point, can impact the overall uncertainty if, for
example, the retrieval X̂ is used as the linearization point. The OCO-2 operational retrieval
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uses this convention, so this choice is used throughout the rest of this paper. Henceforth, we
define

Ŝ ≡ S(X̂) =
[
K(X̂)TΣ−1

e K(X̂) + Σ−1
a

]−1
.

The combination of X̂ and Ŝ are typically used for inference in operational retrievals that
implement OE. More computationally intensive approaches such as randomized likelihood use
conditional simulation to characterize the uncertainty in the estimate of the state [15].

The primary QOI for OCO-2 is XCO2, the column-averaged dry-air mole fraction of CO2.
Fundamentally, this is the ratio of the number of CO2 molecules in a column to the total
number of molecules of dry air in the column. We decompose the state vector,

X =
[

Xα

Xβ

]
,

where Xα is the vertical profile of CO2 and Xβ is the rest of the state vector. The prior mean
vector of the state,

µa =
[
µa,α
µa,β

]
,

can be similarly decomposed, and the covariance matrix can be written as

Ŝ =
[

Ŝαα Ŝαβ
Ŝβα Ŝββ

]
,

where Ŝαα is the block of the covariance matrix corresponding to the vertical profile of CO2.
Given the configuration of the state vector, XCO2 can be constructed as a weighted average

of the vertical profile of CO2 [19]. The vector of weights h(Xβ) has the same dimension as
Xα, and the weights are generally a function of the other state vector elements. However, the
weights are fixed for the surrogate model defined in section 3, and we drop the dependence of
h on the state vector,

XCO2 = hTXα.

In a similar fashion, the retrieved XCO2 and a variance estimate can be computed from the
retrieval,

X̂CO2 ≡ hT X̂α,

V̂ arXCO2 ≡ hT Ŝααh.

2.3. Error analysis. Linear error analysis is a standard framework for diagnosing error
characteristics in OE retrievals [22]. Through an analytic formulation, the technique quantifies
the linear propagation of uncertainty for particular sources, including the inherent variability
of the state, the noisy measurements, and systematic errors in parameters and the forward
model, into the variability in the retrieval errors. In this article, we compare and contrast
this approach with simulation-based UQ, which can additionally characterize nonlinearity and
uncertainty propagation from any other retrieval algorithm choices, specifically uncertainty in
the prior mean, that are not handled in the OE framework. The linear error analysis technique
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in OE uses a linearization of the retrieval error, ∆ = X̂−X, to decompose the contribution
from the sources noted previously. The linearization process relies on the Jacobian and two
additional operators.

1. The gain matrix G has dimension r × n and characterizes the linear response of the
retrieval to the measurements,

G(X̂) =
[(

K(X̂)
)T

Σ−1
e K(X̂) + Σ−1

a

]−1 (
K(X̂)

)T
Σ−1
e .

2. The averaging kernel A has dimension r × r and characterizes the linear response of
the retrieval to the state vector,

A(X̂) = G(X̂)K(X̂).

In this framework, the retrieval error can be decomposed into several contributions [22],

∆ = X̂−X

=
(
A(X̂)− I

)
(X− µa) (smoothing)

+ G(X̂)ε (noise)
+ γ (nonlinearity).

The nonlinearity term γ is zero for a linear forward model, as outlined in Appendix A.
Additional contributions arise if the forward model used in the retrieval is different from the
true forward function. Parameter error is also introduced if the retrieval model parameters B̂
are different from the true model parameters B. For an operational retrieval such as OCO-2,
these are important contributions to the retrieval error; these other contributions will not be
addressed in the current work.

The analogous error budget has been developed for XCO2 [5]:

∆XCO2 = X̂CO2 −XCO2(3)

= hT
(
Aαα(X̂)− Iαα

) (
Xα − µa,α

)
(smoothing)

+ hTAαβ(X̂)
(
Xβ − µa,β

)
(interference)

+ hTGα(X̂)ε (noise)
+ γXCO2 (nonlinearity).

Here, the averaging kernel matrix is partitioned in a similar fashion to the covariance matrix
with Aαα(X̂) and Aαβ(X̂) representing the CO2-profile rows of the averaging kernel. Further,
Gα(X̂) represents the first 20 rows, corresponding to the CO2 profile, of the gain matrix.

In this budget, the smoothing error for the full state vector is further divided for XCO2
into smoothing error for the CO2 profile and interference error due to the correlation between
retrieval errors in the CO2 profile and retrieval errors in other state-vector elements [5, 23].
The final term, γXCO2, is a catch-all that arises from the nonlinearity of the forward model,
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the role of this nonlinearity in the behavior of the retrieval algorithm, and the choice of
linearization point. In an operational setting, the true state X and random error ε are not
known, so the OE error analysis focuses on characterizing the plausible marginal variability
of each contributor to the budget based on the assumed probability distribution of the true
state and random error [5]. Correlations between contributions are ignored. Through our
simulation experiment (section 4), components of the error budget can be computed directly
from the known true state and model discrepancy. Error budget components can be evaluated
jointly.

3. Surrogate model. The previous section highlighted some of the critical choices in the
practical implementation of the OCO-2 remote sensing retrieval. Parameters that are in reality
uncertain are fixed, and the LM algorithm is configured in a specified fashion. These choices
can impact the distribution of the retrieval X̂ and the adequacy of Ŝ as a measure of the
variability of the distribution of the retrieval error,

∆ = X̂−X.

Particular attention is focused on the retrieval error for XCO2, namely,

∆XCO2 = X̂CO2 −XCO2.

We wish to study this distribution by simulation experiments through extensive Monte Carlo
draws under different combinations of geophysical conditions and algorithm choices. However,
the computational cost of the OCO-2 FP forward model limits the scope of any experiments
involving this model.

Consequently, we have developed a computationally efficient surrogate model and retrieval
based on the physical principles in the OCO-2 FP forward model and measurement approach.
There are multiple strategies for surrogate-model development in the literature. Statistical
models, which are usually Gaussian process models, are often developed as emulators of com-
plex computer models [17, 20]. Another approach involves developing a surrogate of reduced
order or complexity based on the original parent model, which is the approach implemented
in this article. The surrogate model makes some simplifications for interpretability and com-
putational efficiency while attempting to maintain the key components of the state vector
and RT that contribute substantially to uncertainty in XCO2. Scattering of radiation in the
atmosphere by aerosols has been shown to contribute to errors in retrieved XCO2 for other
remote sensing instruments [19], so aerosols are a primary focus for investigation with the sur-
rogate model. After some initial investigation with even simpler surrogate models that did not
include aerosol scattering, we found that the surrogate model presented here exhibits a satis-
factory level of nonlinear behavior for the experiments desired. As implemented, the surrogate
model achieves computational efficiency over the FP model through a reduced state vector,
fixed absorption coefficients, a simplified instrument model, and reduced-accuracy numerics
for RT. Further details on the surrogate model can be found in Appendix B.

The surrogate-model state vector includes the same configuration as the FP state vector
for the CO2 profile, surface pressure, surface albedo, and aerosols, as defined in section 2.1.
Other elements of the FP state vector are not included in the surrogate state vector. Table 1
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highlights the makeup of the two models’ state vectors. In their most extensive formulation,
the surrogate state vector includes 39 elements and the FP state vector includes 49 elements.
A more detailed description of the representation of the state vector and the RT included in
the surrogate model can be found in Appendix B.

Evaluation of the surrogate forward model provides a substantial computational speedup;
a five-iteration retrieval takes approximately 200 seconds with the FP model and approxi-
mately 10 seconds for the surrogate model. This speed improvement allows extensive Monte
Carlo experiments with the surrogate model. Figure 2 provides an overview of the general
experimental setup. An experiment requires specification of the true marginal distribution
for the state X, through (µX,ΣX), the random error characteristics through Σε, and the
forward model parameters B. Similar choices are made for the surrogate retrieval inputs such
as µa,Σa,Σe, B̂. We distinguish two key approaches for choosing these inputs. One option is
to fix these inputs at specified values, which we call the sensitivity mode. Another option, as
illustrated in Figure 2, is to generate random inputs to reflect uncertainty in retrieval inputs.
This option is termed stochastic mode.

The experiment proceeds by simulating a large random sample of state vectors X, each of
which is used to evaluate the forward model. Random errors are added to yield synthetic radi-
ance vectors Y. A surrogate retrieval is then performed to yield retrievals X̂ and covariances
Ŝ.

4. UQ simulation experiment. In this section we develop a surrogate-model experiment
to investigate the impact of systematic misspecification of and uncertainty in the retrieval
prior mean µa on the retrieval error distribution. These experiments focus on the impact of
the prior mean choices for surface albedo and aerosols. Representing the surface and aerosols is
an ongoing challenge in remote sensing retrievals like OCO-2, since they appear to contribute
a substantial portion of the variability in retrieval errors [19].

4.1. Marginal distribution. The geophysical states are constructed from available data
sources, which include remote sensing and reanalysis datasets. These sources provide geo-
physically plausible mean states and intraseasonal variability, which is adequate for study-
ing the error distribution under a range of geophysical conditions and algorithm choices.
The experiment considers a marginal distribution based on typical conditions near Izaña,
Tenerife, Spain in July. Influenced by atmospheric transport from northern Africa, this lo-
cation is characterized by moderate CO2 variability and high mean AOD, particularly from
dust.

A few key data sources provide the basis for the marginal distribution. In each case, daily
“data” from June–August 2013 near the location of interest are extracted. Daily values for
the necessary components of the state vector are treated as replicates, and their empirical
means and covariances are assembled to produce a marginal mean vector µX and a marginal
covariance matrix ΣX. Daily data on vertical profiles for CO2 come from a simulation of
NASA’s Goddard Earth Observing System model, version 5 (GEOS-5) [21]. Daily data on
surface pressure and aerosols come from the modern era retrospective analysis for research and
applications aerosol reanalysis (MERRAero) [2]. Finally, daily data on surface albedo data
come from the Moderate Resolution Imaging Spectrometer (MODIS) albedo product [26].
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4.2. Simulation of the radiances. The (marginal) distribution of X, with mean µX and
covariance matrix ΣX, is used to simulate synthetic state vectors. For each simulated state
X, the surrogate model F(X,B) is evaluated at each wavelength in each band, and random
errors ε are added to yield synthetic radiance vectors Y. The error covariance matrix Σε is
a diagonal matrix. The individual variances are defined to be proportional to the expected
signal. Specifically, let Y ≡ {Yi,j : i = 1, . . . , nj ; j = 1, 2, 3}, where j indexes the spectral band
(O2, weak CO2, strong CO2) and i indexes wavelength within a band. Hence, n1+n2+n3 = n.
Then the variance for each radiance Yi,j is related to its expectation, as follows:

Yi,j = Fi,j(X,B) + εi,j ,

V ar(Yi,j) = cjFi,j(X,B).

The band-specific constant cj is specified to yield signal-to-noise ratios that are comparable
to those characteristic of the OCO-2 instrument. This model for the error variance follows the
general behavior of the instrument with a slightly simplified structure. The OCO-2 operational
algorithm develops wavelength-specific variances based on known instrument characteristics
[11]. These distributional assumptions for generating synthetic states X and radiances Y are
applied for all treatments in the experiment.

4.3. Treatments in the simulation experiment. The experiment explores the impact of
uncertainty in the retrieval prior mean µa, as depicted on the right side of Figure 2; the prior
covariance Σa is fixed at ΣX. In particular, each retrieval uses a prior mean that is generated
from a hyperdistribution,

µa ∼ Gaussian(θa,Ωa).

The experiment includes two factors with levels that reflect different choices for the hyper-
parameters θa and Ωa. The two factors described below included five and three levels, respec-
tively, and the experiment was run in a full two-way factorial design, yielding 15 treatments.

The first factor is the systematic error present in the prior mean µa, reflected by the choice
of the hyperparameter θa. In general, this parameter is defined as an offset from the true
marginal mean,

θa = µX + δ.

The five levels of this factor reflect varying amounts of misspecification:
• MA: δ = −2

√
diag(ΣX),

• MB: δ = −
√

diag(ΣX),
• MC: δ = 0,
• MD: δ =

√
diag(ΣX),

• ME: δ = 2
√

diag(ΣX).
Here,

√
diag(ΣX) represents a vector with a single nonzero element given by the marginal

standard deviation for the natural logarithm of the AOD (log AOD) for the dominant aerosol
type, which is dust for the location of interest. The element is in its appropriate place in
the state vector, and all other elements are set to 0 for all treatments. We know from the
physics behind the retrieval and preliminary surrogate-model experiments that uncertainty in
the AOD component of the prior mean is among the most problematic.
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Table 2
Treatments for the uncertain prior mean (µa) experiment. Each treatment is named as a combination of

the magnitude of systematic error (MA, MB, MC, MD, ME) in the prior mean and the level of uncertainty
(V 0, V 1, V 2) in the prior mean.

Covariance Ωa

0 1
10ΣX diag(ΣX)

−2
√

diag(ΣX) MAV0 MAV1 MAV2
Mean −

√
diag(ΣX) MBV0 MBV1 MBV2

offset 0 MCV0 MCV1 MCV2
δ

√
diag(ΣX) MDV0 MDV1 MDV2

2
√

diag(ΣX) MEV0 MEV1 MEV2

The second factor is the degree of uncertainty present in the specification of the prior
mean, reflected by the choice of the hyperparameter Ωa. The three levels of this factor reflect
no uncertainty, small uncertainty, and moderate uncertainty, respectively:

• V0: Ωa = 0,
• V1: 1

10ΣX,
• V2: Ωa = diag(ΣX).

The treatments are summarized in Table 2.
For the treatments that include some degree of uncertainty in the retrieval’s prior mean

µa, it is possible to estimate components of the variance in XCO2 through the use of the
conditional-variance formula,

V ar(∆XCO2) = E(V ar(∆XCO2|µa)) + V ar(E(∆XCO2|µa)).

The first contribution, E(V ar(∆XCO2|µa)), is the variability in the retrieval errors given
the prior mean, averaged across the distribution of prior means. This variability results
from the inherent variability in the state X as well as the random errors in the radiances
Y, and the posterior covariance Ŝ accounts for these, at least to the extent that the linear
approximation is adequate. The second contribution, V ar(E(∆XCO2|µa)), is variability in
the retrieval bias for a given prior mean across the distribution of prior means. The posterior
covariance Ŝ conditions on the prior mean µa and does not capture this second contribution
to the variability. These components can both be computed in the Monte Carlo framework if
a hierarchical sampling strategy is used. Specifically,

• Generate p = 1, . . . , 50 random prior mean vectors

µa,p ∼ N(θa,Ωa).

• For each prior mean vector µa,p, generate q = 1, . . . , 400 simulated states and radiances
Xp,q,Yp,q and perform retrievals.

The sample size of 400 for each prior mean represents a compromise that achieves a satisfactory
Monte Carlo precision while allowing a reasonable outer loop sample size (50). The treatments
representing no uncertainty in the prior mean (V0) do not require hierarchical sampling. For
these treatments, a total of 5000 independent state and radiance vectors were simulated.

5. Results. This section summarizes the results of the experiment in several ways. Since
XCO2 is the primary QOI, it receives additional focus, both in terms of the components of



970 HOBBS, BRAVERMAN, CRESSIE, GRANAT, AND GUNSON

variance relative to variability in the retrieval prior mean and in terms of the components of
the error budget. In addition, the bias and covariance of the retrieval errors for the full state
vector X are summarized using a small set of summary figures of merit. These diagnostics
reveal key properties of the CO2 retrieval and represent a suite of tools that could additionally
be used in summarizing simulation experiments for other remote sensing retrievals and similar
nonlinear Bayesian inverse problems.

5.1. XCO2 components of variance. Figure 4 summarizes the error distributions for
XCO2 for each of the treatments in the experiment. The error distribution for each prior
mean µa, which is fixed for the V0 treatments (left column) and randomly generated (center
and right columns), is summarized with its mean and two extreme quantiles. The impact
of the increasing level of uncertainty in the retrieval prior mean is evident both in the V1
treatments, where a modest amount of additional variability is present in the overall error
distribution, and in the V2 treatments, where there is especially noticeable variability in the
conditional means (points) of the XCO2 errors for the randomly selected prior means. In
addition, there is a weak relationship between this conditional bias and the prior mean log
AOD, which is particularly evident in the MAV2 and MEV2 treatments. As the log AOD
prior mean increases, the mean XCO2 retrieval error decreases. This relationship clearly does
not explain all of the variability in the conditional bias, so other elements of the prior mean
vector play a role as well.

Table 3 summarizes the bias and variance in the XCO2 retrieval error for each treatment in
the experiment. For the V1 and V2 treatments, the variance is separated into the contributions
from the average error variance within each prior mean E(V ar(∆XCO2|µa)) and from the
variance of average errors across prior means V ar(E(∆XCO2|µa)). In addition, the average
of the estimated posterior variances E(V̂ arXCO2), is reported for comparison.

From a practical standpoint, the retrieval bias is small (less than 0.1 ppm) for all except
the extreme MA and ME treatments. There is a trend from negative to positive bias moving
from MA to ME. This suggests that the prior-mean specification may reflect the importance
of nonlinearity in the presence of parameter error, a topic that is studied further in section 5.2.
The volatility is also reflected in the variance of the retrieval errors. Both components of the
error variance are largest for the MAV2 and MEV2 treatments. The between-prior variance
is largest for the V2 treatments and is relatively modest in the V1 treatments.

The average of the estimated posterior variances, E(V̂ arXCO2), compares well to the
empirical error variance computed from the Monte Carlo simulations for the V0 treatments,
although the empirical error variance is at least slightly larger for every treatment. The
posterior variance attempts to capture the inherent variability in the atmospheric state and
the noise present in the radiances, and the inflation in the V0 treatments may be due in
part to nonlinearity. In addition, the posterior-variance calculation assumes a fixed (known)
prior mean µa, so the V1 and V2 treatments will exhibit additional variability in the retrieval
errors that would not be captured in the calculation of V̂ arXCO2. This mismatch is noticeable,
around 20%, in the small-uncertainty (V1) treatments and becomes more substantial, as large
as 50%, for the moderate-uncertainty (V2) treatments. This result underscores the impact
of uncertainty propagation for a particular algorithm input, µa, through uncertainty in the
primary QOI.
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Figure 4. Distribution of retrieval errors for XCO2, under the hierarchical sampling strategy and different
experiment conditions, plotted against the log AOD component of the prior mean. The solid vertical line depicts
the true marginal mean of log AOD. Solid circles depict the distribution’s mean and error bars cover the center
95% of the retrieval-error distribution.
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Table 3
Summary of XCO2 bias and variance for the uncertain prior mean experiment. Bias is reported in units

of ppm and variance is reported in units of ppm2. The total variance of the retrieval errors is V ar(∆XCO2) =
E(V ar(∆XCO2|µa)) +V ar(E(∆XCO2|µa)), which is the sum of the two components above it in the table. This
total can be contrasted with the retrieval’s mean estimated variance E(V̂ arXCO2).

MAV0 MAV1 MAV2
E(∆XCO2) 0.210 0.264 0.312

E(V ar(∆XCO2|µa)) 0.436 0.588 0.663
V ar(E(∆XCO2|µa)) 0.006 0.034

V ar(∆XCO2) 0.436 0.594 0.697
E(V̂ arXCO2) 0.344 0.482 0.483

MBV0 MBV1 MBV2
E(∆XCO2) 0.073 0.097 0.144

E(V ar(∆XCO2|µa)) 0.382 0.553 0.588
V ar(E(∆XCO2|µa)) 0.006 0.022

V ar(∆XCO2) 0.382 0.559 0.610
E(V̂ arXCO2) 0.331 0.466 0.471

MCV0 MCV1 MCV2
E(∆XCO2) 0.015 −0.023 0.067

E(V ar(∆XCO2|µa)) 0.388 0.545 0.661
V ar(E(∆XCO2|µa)) 0.003 0.027

V ar(∆XCO2) 0.388 0.548 0.688
E(V̂ arXCO2) 0.324 0.456 0.461

MDV0 MDV1 MDV2
E(∆XCO2) −0.069 −0.110 −0.021

E(V ar(∆XCO2|µa)) 0.386 0.543 0.582
V ar(E(∆XCO2|µa)) 0.003 0.023

V ar(∆XCO2) 0.386 0.546 0.605
E(V̂ arXCO2) 0.318 0.444 0.456

MEV0 MEV1 MEV2
E(∆XCO2) −0.120 −0.166 −0.127

E(V ar(∆XCO2|µa)) 0.371 0.533 0.658
V ar(E(∆XCO2|µa)) 0.003 0.027

V ar(∆XCO2) 0.371 0.536 0.685
E(V̂ arXCO2) 0.313 0.438 0.437

Since each retrieval, X̂CO2, has a corresponding reported variance, V̂ arXCO2, the distribu-
tion of retrieval errors can also be diagnosed by normalizing the retrieval error by the square
root of this reported variance. The distribution of this unitless quantity,

Zp,q =
∆XCO2,p,q√
V̂ arXCO2,p,q

, p = 1, . . . , 50, q = 1, . . . , 400,

is summarized in Figure 5 for each treatment in the experiment. The standardized errors
{Zp,q} are sorted and plotted against standard Gaussian quantiles, yielding a quantile-quantile
plot. The slope of the resulting regression line yields a scaling of the standard deviation of the

true retrieval errors relative to
√
V̂ arXCO2,p,q, which is based on the linear approximation.

This slope is closest to unity for the V0 and V1 treatments but deviates more substantially
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Ŝ

Slope: 1.089

MBV1

-10.0 -5.0 0.0 5.0 10.0
Standard Normal Quantile

-10.0

-5.0

0.0

5.0

10.0

∆ √
Ŝ
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Figure 5. Distribution of normalized XCO2 retrieval errors under different experimental conditions, plotted
against quantiles from a standard normal distribution.
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in the V2 treatments. In particular, the V2 treatments show a tendency toward skewed and
heavy-tailed error distributions.

5.2. XCO2 error budget. Section 2.3 outlined an error budget (3) that is often used
in diagnosing remote sensing retrievals. Three of the four error terms, namely, smoothing,
interference, and noise, can be computed directly for each Monte Carlo draw and corresponding
retrieval. Since the total XCO2 error is available as well, the error due to nonlinearity can be
computed as a difference between the total and the sum of the other three components. The
joint distribution of the error terms can be summarized from these calculated errors across
the Monte Carlo simulation. In addition, an estimate of the variance for each of the first
three components can be obtained based on a linear approximation and assumed covariance
matrices Σe and Σa. The calculation based on a linear approximation is often called linear
“error analysis” in the remote sensing literature [23, 5], and in our experiment we have an
opportunity to assess the validity of linear error analysis.

Figure 6 compares the standard deviation of each error component for each treatment,
using both the actual errors based on the simulation and the standard deviations computed
based on the linear approximation. The variability in the smoothing error and noise error
are nearly constant across all treatments, and the simulation-based variability matches that
expected from the linear approximation for both smoothing and noise. These two error com-
ponents reflect variability due to Σε and the CO2 portion of ΣX, parameters that are not
changed across the treatments.

In contrast, the variability of the interference error and the nonlinear error change across
treatments. The error budget suggests that different retrieval prior means µa will likely
lead to different distributions of interference error. The average interference error is related
to the difference between the marginal mean µX and the retrieval prior mean µa for the
pressure, aerosol, and albedo components of the state vector. These are the constituents of
Xβ in the interference term of the error budget (3). Thus the variability in the retrieval prior
mean translates to variability in the average interference error. This variability is not present
in the calculation based on the linear approximation, where a fixed retrieval prior mean is
assumed. The nonlinear error is a component that is difficult to diagnose in operational linear
error analysis, but it is available in this Monte Carlo setting. The nonlinear error term can
dominate for the treatments with greater uncertainty. As shown in Figure 6, the variability
due to nonlinearity is the largest of the error budget terms in the V2 treatments.

Figure 6 also shows the standard deviation of the total error in XCO2 for both the simu-
lation and the linear approximation. The simulation-based standard deviations are computed
from the true retrieval errors in the experiment. For the linear approximation, the standard

deviation is
√
E(V̂ arXCO2). The impact of both the nonlinearity and interference error con-

tributions is evident in the simulation-based variability of the total error, especially for the
V2 treatments. The bottom panel of Figure 6 shows that the traditional error analysis always
yields total variances that are too small, sometimes substantially so.

The total error variance can also be impacted by correlations among the error budget
components. Table 4 summarizes these empirical correlations among the terms in the error
budget in the MCV0 (control) and MEV2 treatments. This analysis of the correlations among
the components of the error budget is possible in the simulation-based setting, but correlations
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Figure 6. Standard deviation of error-budget components and of the total error for each treatment in
the experiment. The four upper panels depict an individual component of the error budget, with the bottom
panel depicting the total error. The total error is computed as the standard deviation of the true retrieval
errors for the simulation case. For the linear approximation, the total error standard deviation is computed as√

E(V̂ arXCO2). The treatments are represented in sequence on the horizontal axis. Solid circle (•) symbols
represent standard deviations computed from the simulated errors, and × symbols represent standard deviations
based on OE’s linear approximation.

are not given in traditional linear error analysis. This represents a potential weakness since
the variance of the total error is the sum of the variances of individual terms plus twice the
sum of covariances between all possible error pairs. Traditional error analysis assumes that
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Table 4
Correlations of error-budget components for the MCV 0 (control) and MEV 2 treatments in the simulation

experiment.

MCV0
Smoothing Interference Noise Nonlinear

Smoothing 1.000 −0.039 −0.013 0.075
Interference −0.039 1.000 0.001 0.081
Noise −0.013 0.001 1.000 −0.191
Nonlinear 0.075 0.081 −0.191 1.000

MEV2
Smoothing Interference Noise Nonlinear

Smoothing 1.000 −0.011 0.017 0.027
Interference −0.011 1.000 −0.033 0.043
Noise 0.017 −0.033 1.000 −0.089
Nonlinear 0.027 0.043 −0.089 1.000

the latter component is zero. From Table 4, smoothing, interference and noise errors are
essentially uncorrelated with each other. In general, smoothing and interference errors could
be correlated with each other if the marginal distribution includes cross-correlations between
the CO2 profile and other components, such as aerosols. The marginal distribution used in
this surrogate model experiment does not include correlations between the CO2 and non-CO2
components of the state vector. The nonlinear term has modest correlations with the other
terms in the control experiment, and the correlation remains, particularly with noise error, in
the MEV2 treatment.

5.3. State vector figures of merit (FOMs). An assessment of the error distribution of
the full state vector provides additional insight into the behavior of the retrieval algorithm.
In particular, a component-by-component look at the retrieval bias and variance can reveal
specific state-vector elements that may be more or less problematic in the retrieval. This
can be complemented with an investigation of the correlations of retrieval errors across com-
ponents. Strong correlations, either positive or negative, can suggest combinations of state
vector elements that may not be completely identifiable in the retrieval. The Monte Carlo
experiment provides the distribution of retrieval errors, ∆ = X̂ − X, and this distribution
can be summarized with some key FOMs useful in simultaneous inference [6]. Following the
notation of Cressie and Burden [6], we define the retrieval bias and covariance as

Bias ≡ E(X̂−X) = E(∆),

Cov ≡ Cov(X̂−X) = Cov(∆).

One useful FOM is a unitless normalized bias, or inverse coefficient of variation,

Icv = (diag(Cov))−1/2Bias.

Figure 7 illustrates this FOM for the experiment. The behavior of Icv shows some interesting
contrasts between Xα, the CO2 profile, and Xβ, the other elements of the state vector. In
general, larger biases are present for the components Xβ. Some of these errors can compensate
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Figure 7. Summary of normalized bias, Icv, for the uncertain inputs experiment.

for each other to an extent; for example, an error in retrieved aerosol can offset an error in
retrieved albedo without a substantial impact on CO2. Large bias is particularly evident for
surface pressure, the band-specific albedo, and the log AOD components for the V1 and V2
treatments. While the V2 treatments have large absolute bias, the variability is most extreme
for these treatments as well. The largest errors in Xα tend to occur in the middle to lower
atmosphere, where the CO2 variability is largest.

Additionally, the correlation matrix of the retrieval errors can provide insight into the
relationships among the state vector elements. Figure 8 depicts this matrix for the MCV0
(control) experiment. The upper left 20 × 20 block represents the correlations among the
retrieval errors for the vertical profile of CO2. Error correlations for nearby vertical positions
are generally positively correlated. The components of the CO2 profile exhibit modest cor-
relations with other elements of the state vector. The strongest negative correlations exist
between the albedo and aerosol components of the state vector. This is an illustration of one
of the fundamental challenges for the OCO-2 measurements; surface albedo and aerosol scat-
tering near the surface can give rise to similar spectral signatures. The negative correlation
is consistent with the retrieval attempting a trade-off between these contributions.

6. Discussion and conclusion. This study has developed and illustrated a practical frame-
work for quantifying uncertainty in remote sensing retrievals. The combination of a compu-
tationally efficient surrogate model and a Monte Carlo framework allows simulation from the
retrieval-error distribution under a variety of conditions. These empirical results can be read-
ily compared with OE error analysis based on a linearity assumption. The simulation-based
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Figure 8. Correlation matrix of retrieval errors, ∆ = X̂−X, for the MCV 0 (control) experiment.

assessment in this study provides a number of insights beyond those obtained from the OE lin-
ear error analysis. First, the variability in the error due to nonlinearity can be diagnosed, and
it is seen to change across the treatments in the experiment. Second, the simulation reveals
that uncertainty in the prior mean µa results in a larger interference-error variance than that
computed in the linear approximation. Finally, modest correlations among the error budget
components are found using the simulation results, which lead to covariances that must be
incorporated to achieve an accurate measure of total error.

In addition, the simulation approach provides an overall quantification of the adequacy
of the retrieval’s uncertainty estimate, and it can also characterize the variability in retrieval
errors due to nonlinearity. We find that the combination of systematic misspecification of, and
uncertainty in, the prior mean for aerosols and albedo impact the retrieval bias and variance
for XCO2. There is an important interaction between these two factors that leads to large
bias and variability when the prior mean of log AOD is high.

The impact of uncertain retrieval-algorithm inputs in general has implications for the
community of OCO-2 data-product users. The operational retrieval algorithm reports the ap-
proximate posterior variance for XCO2, called V̂ arXCO2 in this article, which accounts for the
variability in the atmospheric state and the radiance residual variability but not uncertainty
in the retrieval-algorithm inputs. This can result in a reported uncertainty that underesti-
mates the actual retrieval error variance. Inference for carbon fluxes utilizes remote sensing
data along with the reported uncertainties, so a more appropriate characterization of the error
variance could lead to improved flux inversion. A geographically and seasonally comprehen-
sive set of UQ experiments could provide guidance to adjusting the reported uncertainty in
the operational data products. The results of this study suggest that adjustments would be
especially warranted for high AOD conditions.
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This study has investigated the impact of uncertainty in the retrieval prior mean µa as
an algorithm input. We note that the model for uncertainty on µa can be written as

µa − µX ∼ Gaussian(δ,Ωa)

for a given µX. Now, if µa is fixed, sampling from this distribution would generate uncertainty
on the marginal mean, µX. Thus, the same MC draws of µa − µX could be used in a
simulation experiment that considers uncertainty on the marginal mean, µX. The structure
of the marginal distribution is also an important consideration; a more general representation
than a multivariate Gaussian distribution may be appropriate.

Other key algorithm inputs, especially those linked to aerosols and albedo, likely impact
the retrieval uncertainty. The investigation could be extended to incorporate uncertainty
in the retrieval prior covariance Σa, particularly the portion corresponding to albedo and
aerosols. The current OCO-2 operational algorithm uses a constant prior covariance matrix
for all retrievals, and the impact of this choice on retrieval error distributions will depend on
the spatially and temporally varying nature of the true marginal distribution [19].

The choice of forward-model parameters B can impact the retrieval uncertainty as well.
Several forward-model parameters characterize the wavelength dependence of aerosol absorp-
tion and scattering, and uncertainty in these parameters could impact the retrieval-error
distribution. In addition, the forward model relies on discrete choices of aerosol types, which
cannot perfectly capture the actual aerosol conditions in the atmosphere [9]. There is also
potential in using collections of soundings Y to estimate these forward-model parameters from
the data.

This Monte Carlo framework is sufficiently general, and the surrogate model offers an
adequate tradeoff between computational efficiency and physical realism to facilitate all of
these potential UQ investigations for the OCO-2 OE retrieval. The framework simply requires
a statistical model for the atmospheric state, a forward model representing the remote sensing
instrument, and a retrieval algorithm for estimating the state given satellite observations. In
fact, this framework could be used to provide uncertainty estimates for any retrieval algorithm,
whether it is Bayesian or not.

OCO-2’s implementation of the OE framework uses a numerical search for the posterior
mode and provides a posterior covariance matrix based on a linear approximation. This
article has addressed the propagation of uncertainty resulting from uncertain inputs into
this specific algorithm and resulting estimator. Section 1 notes that the Bayesian formulation
allows for other strategies for inference, including exploration of the full posterior distribution,
[X|Y]. The OCO-2 FP forward model is likely too computationally expensive for posterior
inference based on MCMC, for example, but sampling from the posterior distribution is feasible
using the more efficient surrogate model developed here. As a reviewer has suggested, the
comprehensive results that are efficiently produced with the surrogate model experiments can
be compared to a subset of corresponding experiments with the FP forward model. This work
is ongoing.

The OE remote sensing retrieval can be framed as an example of prediction in a nonlinear
mixed model. This class of statistical models has been applied in a wide range of disciplines
from medicine to environmental applications [10], and hence there is the potential to study the
properties of predictors for random effects, or of estimators of fixed effects. The error budget
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diagnostics developed and illustrated in this paper could be implemented in other applications
of nonlinear mixed models.

Appendix A. The effect of linearity on the error budget. If the forward model is linear,

Y = µ+ KX + ε,

then the error budget can be decomposed exactly into contributions from smoothing and noise.
For the linear model, the posterior covariance S, gain G, and averaging kernel A are given by

S =
[
KTΣ−1

e K + Σ−1
a

]−1
,

G =
[
KTΣ−1

e K + Σ−1
a

]−1
KTΣ−1

e

A = GK.

Assume without loss of generality that µ = 0. For this model, the retrieval is linear,

X̂ =
[
KTΣ−1

e K + Σ−1
a

]−1 [
Σ−1
a µa + KTΣ−1

e Y
]

= SΣ−1
a µa + GY

= SΣ−1
a µa + G (KX + ε)

= SΣ−1
a µa + AX + Gε.

Now,

A + SΣ−1
a = S

(
KTΣ−1

e K
)

+ SΣ−1
a

= S
(
KTΣ−1

e K + Σ−1
a

)

= SS−1

= I,

so
SΣ−1

a = I−A.

Then, the retrieval error can be written as

X̂−X = SΣ−1
a µa + AX−X + Gε

= (I−A)µa + (A− I) X + Gε.

This results in the linear error budget

∆ = X̂−X

= (A− I) (X− µa) (smoothing)
+ Gε (noise).

Appendix B. Surrogate model description. Some of the key aspects of the surrogate
forward model F(X,B) include configuration of the atmospheric state vector X, discretization
of the atmospheric profile, trace gas absorption, RT, and viewing geometry.
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Formally, the forward model Fi,j(X,B), i = 1, . . . , nj , j = 1, 2, 3, defines the expected
radiance as a function of the state X and parameters B for wavelength i in spectral band
j. Hence, n = n1 + n2 + n3. The three spectral bands correspond to the three OCO-2
spectrometers,

• O2 A-band (j = 1), centered near 0.765 µm,
• weak CO2 band (j = 2), centered near 1.64 µm,
• strong CO2 band (j = 3), centered near 2.06 µm.

B.1. Vertical profile and state vector. The surrogate model discretizes the atmospheric
vertical profile into k = 1, . . . ,K layers; the surrogate model uses K = 19. The atmospheric
composition within a layer is assumed homogenous. Layer boundaries are defined by a unitless
vertical coordinate qk = pk/ps, where pk is the atmospheric pressure at the top boundary of
layer k and pk+1 is the pressure at the bottom boundary of layer k. The bottom layer is
bounded by the surface, characterized by the surface pressure ps. The K+ 1 layer boundaries
are fixed at {q1 = 0.0001, q2 = 1/K, q3 = 2/K, . . . , qK+1 = 1.0}.

The atmospheric state vector X includes
• the dry air mole fraction of CO2, ck′ , at level k′, k′ = 1, . . . ,K + 1;
• the surface pressure ps;
• coefficients b0,`, b1,`, b2,`, ` = 1, . . . , 4, representing the vertical profile of each of four

atmospheric scattering species, including two composite aerosol types, cloud ice, and
cloud water;
• coefficients a0,j , a1,j representing the surface-albedo dependence on wavelength in each

of the three spectral bands.
Some additional quantities defined below are functions of these state vector constituents.

Any other quantities used are part of the parameter vector B. These additional parameters
include gas absorption coefficients and aerosol extinction and scattering coefficients.

B.2. Intermediate quantities. The surrogate model Fi,j can be more conveniently defined
in terms of several intermediate quantities, which are functions of X and B. The explicit nota-
tional expression of this dependence is dropped in subsequent discussion. These intermediate
quantities include

• surface albedo Ai,j ;
• vector of layer-specific optical depths τ i,j ≡ {τi,j,k : k = 1, . . . ,K};
• vector of layer-specific single-scattering albedo ωi,j(τ i,j) ≡ {ωi,j,k(τi,j,k) : k = 1, . . . ,K};
• layer-specific phase function Pi,j(τ i,j) ≡ {Pi,j,k(τi,j,k) : k = 1, . . . ,K}.

The layer-specific optical depth τi,j,k quantifies the extinction of radiation in layer k. It is
the sum of the optical depth for trace gas absorption τG,i,j,k, from Rayleigh extinction τR,i,j,k,
and from each scattering species τM,i,j,k,`,

τi,j,k = τG,i,j,k + τR,i,j,k +
4∑

`=1

τM,i,j,k,`.

The optical depth due to trace gas absorption is a function of the abundance of the absorbing
gas (O2 or CO2) in the atmospheric layer and a wavelength-dependent absorption coefficient
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ρi,j,k. In the O2 A-band,

τG,i,j,k = 0.21 ρi,j,k
ps(qk+1 − qk)

gmd
, j = 1,

where md is the molar mass of dry air with units kg mol−1 and g is the gravitational constant.
In the weak and strong CO2 bands,

τG,i,j,k =
ck + ck+1

2
ρi,j,k

ps(qk+1 − qk)
gmd

, j = 2, 3.

The absorption coefficients ρi,j,k, with units m2 mol−1, are a set of fixed coefficients that
are extracted from the OCO-2 FP absorption coefficient tables. The Rayleigh optical depth
is

τR,i,j,k = ρR,i,j,k
ps(qk+1 − qk)

gmd
,

where ρR,j,j,k is a Rayleigh extinction coefficient, which is assumed known. Note that the
quantity

∆pk = ps(qk+1 − qk)
= pk+1 − pk,

is the pressure difference between the bottom and the top of layer k.
The AODs for each of the four scattering species are based on a characteristically shaped

aerosol profile, parameterized by the coefficients b0,`, b1,`, b2,`. The characteristic shape mimics
a Gaussian probability density function. Then the layer-specific optical depths are defined as

τM,i,j,k,` = ei,j,` exp{b0,`}
Φ
(
qk+1−b1,`

b2,`

)
− Φ

(
qk−b1,`

b2,`

)

Φ
(

1.0−b1,`

b2,`

)
− Φ

(
q1−b1,`

b2,`

) ,

where Φ is the standard Gaussian cumulative distribution function. Each wavelength and
scattering species has an extinction efficiency ei,j,` that is assumed known, and the shortest
wavelength in the O2 A-band is used as a reference with e1,1,` = 1. Then exp{b0,`} is the
total optical depth at this reference wavelength for each scattering species. The coefficient
b1,` defines the peak height of the aerosol profile, and b2,` characterizes the effective depth of
the profile.

In addition to extinction from multiple sources, the forward function also incorporates
Rayleigh scattering and scattering by the four scattering species. Scattering behavior is quan-
tified by the single-scattering albedo ωi,j,k(τi,j,k) and the phase function, Pi,j,k(τi,j,k). The
single scattering albedo is defined as

ωi,j,k(τi,j,k) =
τR,i,j,k +

∑4
`=1 ωM,i,j,` τM,i,j,k,`

τi,j,k
.
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Each scattering species has its own wavelength-dependent single-scattering albedo, ωM,i,j,`,
which quantifies the fraction of scattered radiation to extinction, and these parameters are
assumed known.

The phase function Pi,j,k(τi,j,k) characterizes angular dependence of scattering,

Pi,j,k(τi,j,k) =
τR,i,j,kPR,i,j +

∑4
`=1 ωM,i,j,`τM,i,j,k,`PM,i,j,`

τR,i,j,k +
∑4

`=1 ωM,i,j,` τM,i,j,k,`

,

where PR,i,j and PM,i,j,` are known phase functions for Rayleigh scattering and the individual
scattering species.

Finally the surface albedo provides a lower boundary condition for the transfer of radi-
ation through the atmosphere. The surrogate model assumes a Lambertian surface and the
wavelength dependence of albedo is represented by

Ai,j = a0,j + a1,j(νi,j − ν(0)
j ),

where νi,j is the wavenumber of interest and ν
(0)
j is a predefined reference wavenumber for

each band.

B.3. Radiative transfer. The surface albedo, optical depth, single-scattering albedo, and
phase function are inputs to computational routines for RT. A variety of routines of varying
complexity and numerical accuracy are available for solving the RT equation, which is an
integro-differential equation for the intensity of radiation as a function of the path through
the atmosphere. Additional inputs for RT include the solar geometry and satellite viewing ge-
ometry (zenith and azimuth angles). Vector RT routines solve for the full Stokes vector, which
incorporates scalar intensity along with polarization. The surrogate model Fi,j includes a fully
polarized first order of scattering (FO) routine and a scalar two-stream (2S) approximation
for the contribution from multiple scattering. The FO routine outputs the top of atmosphere
(TOA) Stokes vector (IFO,i,j , QFO,i,j , UFO,i,j), and the 2S routine outputs a (TOA) multiple
scattering intensity I2S,i,j . This RT implementation is one key distinction between the sur-
rogate model and the OCO-2 FP forward model, where the latter utilizes more numerically
accurate second-order of scattering and a larger number of streams for multiple scattering
[16, 18].

The instrument geometry defines the Stokes coefficients (MI ,MQ,MU ), and the expected
radiance can be computed as

Fi,j(X,B) = MIIFO,i,j(Ai,j , τ i,j ,ωi,j(τ i,j),Pi,j(τ i,j))
+MII2S,i,j(Ai,j , τ i,j ,ωi,j(τ i,j),Pi,j(τ i,j))
+MQQFO,i,j(Ai,j , τ i,j ,ωi,j(τ i,j),Pi,j(τ i,j))
+MUUFO,i,j(Ai,j , τ i,j ,ωi,j(τ i,j),Pi,j(τ i,j)).
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